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When a layer of liquid is heated from below at a rate which exceeds a certain 
critical value, a two- or three-dimensional motion is generated. This motion 
arises from the action of buoyancy and surface tension forces, the latter being 
due to variations in the temperature of the liquid surface. 

The two-dimensional form of the flow has been studied by a numerical method. 
It consists of a series of rolls, rotating alternately clockwise and anticlockwise, 
which are shown to be symmetrical about the dividing streamlines. As well as 
a detailed description of the motion and temperature of the liquid, and of the 
effects on these characteristics of variations in the Rayleigh, Marangoni, Prandtl 
and Biot numbers, a study has been made of the conditions under which the 
motion first starts, the wavelength of the rolls and the rate of heat transfer across 
the liquid layer. 

Introduction 
Motion in heated liquid layers had been observed (Thompson 1855) approxi- 

mately fifty years before BBnard (1900a, b )  began a systematic study of the 
phenomenon which now bears his name. Steady-state patterns may be observed 
when, under certain conditions, a vertical temperature gradient is applied to a 
thin liquid layer. Density stratification was first thought to be the driving force, 
and this led to studies of natural convection in fluid layers. More recently, how- 
ever, it has been realized that, for liquids with free surfaces, variations in tem- 
perature could cause surface tension gradients which may be at least as significant 
as the buoyancy forces. The onset of instability was first studied by Pearson 
(1958), who attributed the cellular motion observed by BBnard to the action of 
surface tension alone, and he made a small disturbance analysis for a liquid 
layer, the lower surface of which was in contact with a rigid boundary while the 
free upper surface remained plane. 

Two boundary conditions were imposed on the lower surface, namely, in- 
sulating and conducting. For both cases he found a critical value of the Marangoni 
number below which the disturbances would decay and the fluid remain stable. 

Later investigations, including those of Nield (1964), Scriven & Sternling 
(1964) and Smith (1966), have refined Pearson’s analysis to include the effects 
of buoyancy and surface deformation. 

The aim of this investigation has been to study the detailed behaviour of 
the motion when surface tension and buoyancy are coupled. Our model, similar 
to Nield’s, is that of a two-dimensional layer of liquid, resting on a rigid surface, 
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the temperature of which is maintained constant and higher than that of the 
fluid above the free surface. Heat is transferred by conduction and (if motion 
occurs) by convection to the upper liquid surface. It is then transferred t o  the 
surrounding fluid by convection at a rate determined by a prescribed surface 
heat transfer coefficient. The temperature of this fluid ‘at infinity’ is assumed 
constant. If the liquid is in motion, the temperature of its surface will not be 
constant, and as a result there will be a variation of surface tension which will 
coiitribute to the motion. 

In  the analysis of the motion, the following assumptions were made: 
(i) Viscous dissipation is negligible and internal energy generation absent. 
(ii) The Boussinesq approximations are valid. 
(iii) The free surface remains undeformed. 
(iv) Evaporation from the free surface is negligible. 
(v) The fluid above the free surface exerts no tangential force on the surface. 

Derivation of equations 

momentum and energy, which may be written for the above assumptions as: 
The equations describing the motion are those expressing conservation of mass, 

-- D‘’ - ap’+{l -p(O‘-O;)}g+vV’2u‘, 

~ =--- ap‘ + vv‘2u‘, 
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The geometric configuration and co-ordinates are shown in figure 1.  u’ and v’ 
are the velocity components in the x‘ (vertically downwards) and y’ (horizontal) 
directions; p, p, v,  k and C, denote respectively the density, volumetric ex- 
pansion coefficient, kinematic viscosity, thermal conductivity and specific heat 
of the liquid; p’ and 8’ are the pressure and temperature of the liquid; t’ denotes 
time. Primes denote dimensicnal quantities, and the subscript 0 indicates some 
reference state, say that of the surrounding fluid. 

We introduce variables P‘ and T‘ to denote departures of pressure and teni- 
perature from the hydrostatic (pure conduction) situation, through the equations, 

p‘ = P’ +pi  and 0’ = T’ + Oi, P a ,  b )  

where p:  and 8: are the pressure and temperature respectively in the absence 
of motion. The momentum equations ( 1  b,  c )  are now 

gpT’ + vV‘&u’, 
Du‘ 1 apt 
Dt‘ poaxl 
. = 

1 aP’ 
_ -  , + V V ’ 2 V ’ .  
Dt‘ PoaY 

- --- DV‘ 



A numerical study of the Binnard cell 807 

Combining these by cross-differentiation to eliminate pressure, we obtain 

where the vorticity g, is 

- 1 - I  

FIGURE 1. Co-ordinate system. 

Under conditions of pure conduction, the temperature distribution Bi(x) is 
linear; the energy equation (1  d )  thus becomes 

We define a stream function 9' by 

and it follows that y = -V'Z$'. (7) 

When introducing dimensionless quantities, we see that the surface temperature 
8; is not useful, since it varies, and is determined by the motion of the liquid and 
by convection to the fluid over the liquid. This temperature is given by 

where ha is the surface convection coefficient, and 0; is the fluid temperature 
far above the surface. The dimensionless temperature 0 is defined instead as 
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where 0; is the lower surface temperature. The remaining dimensionless quan- 

x = x'lc, y = y'/c, t = t'v/cz, and @ = $'/v, tities are 

where c is the depth of the liquid layer. 
The equations then become 

where 

g = - V Z ~ ,  

1 
- V2T, 

DT Bi - + u p  - - 
Dt 1 + B i  Pr 

Gr = Grashof number = g,Bc3(0~ - 0L)lv2, 

Pr = Prandtl number = pC,v/lc, 

Bi = Biot number = h,c/k. 

Boundary conditions 

along the free surface, a force balance shows that 
Following Pearson (1958),  and assuming that normal stresses vary negligibly 

a Z u  ~ a a 2 ~  

3x2 Pr ayz' 
- = - ~ - -  

which may be written in terms of vorticity as 

ag M a  a2T 
ay Pr ay2 ' 
_ - _ _ ~  - 

where M a  = Marangoni number = [yC,(0; - 0;) c ] / vk ,  and y is the temperature 
coefficient of surface tension (r) : 

= - - 0;). 

aepx = B ~ . o , ,  (1la) 

aT/ax = ~ i .  T,, ( 1 l b )  

The thermal boundary condition at the free surface (8) may be written 

or, in terms of the convection temperature, 

where the subscript u denotes the free upper surface. The free surface vertical 
velocity u is zero as a result of the assumption of a non-deforming surface, 
and $ = 0. The lower surface is isothermal and rigid; hence, T = u = v = ~ = 0. 

Conditions at the side boundaries of the solution region are not clear. An- 
ticipating that the motion in an  idni te ly  wide layer will take the form of periodic 
rolls, we are interested in determining the periodicity (i.e. the roll wavelength 
in terms of the depth of the layer) and caimot specify this a priori. Moreover, 
we cannot be sure that the dividing streamline between adjacent rolls will be 
vertical. 
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Accordingly, we are first of all forced to assume a value for the roll wavelength 
in order to fix the size of the solution region. Pollowing Malkus (1954a, b),  the 
preferred wavelength for given parameters (Gr, Pr, Mu and Bi) will be taken as 
that which maximizes the rate of heat transfer. 

With the roll size fixed, we still have two possible lateral boundary conditions. 
The more general, and more obvious, alternative is to examine a pair of rolls 
and invoke the periodic nature of the flow. As discussed below, the results of 
this approach suggested that in fact the dividing streamlines were vertical and 
formed lines of symmetry between adjacent rolls. Most solutions were therefore 
obtained with this latter condition, which has the computational attraction 
that the storage requirement and computing time are virtually halved. 

The Nusselt number (Nu), or dimensionless rate of heat transfer, is a property 
of practical interest. Since the velocity at the lower surface is zero, Nu could 
be evaluated from the temperature gradient there. However, this requires the 
use of inaccurate one-sided finite difference approximations. Additionally, there- 
fore, the combined conduction and convection heat transfer rates were hori- 
zontally averaged and computed as a function of depth below the surface. It 
can be readily shown that 

or, if calculated at the upper or lower boundaries 

where L is the dimensionless width. Nu here is defined as the heat flux per unit 
temperature difference between the lower surface and the fluid far above the 
free surface. Later, a Nusselt number based upon the average temperature dif- 
ference across the liquid layer will be introduced. 

Method of solution 
The equations and boundary conditions were approximated using finite dif- 

ferences and solved at the nodes of a rectangular grid superimposed on the 
domain. The vorticity and energy transport equations were solved using the 
alternating direction implicit scheme outlined by Brian (1961), which consists 
essentially of breaking the time step into two equal parts and approximating 
the equations implicitly in one direction and explicitly in the other for the f i s t  
half time step, the procedure then being reversed for the second half time step. 
Two intermediate values of the time dependent variable (T or 5)  are obtained. 
An explicit relationship is then derived which satisfies the equation and is used 
to eliminate the second intermediate value by substitution. (This method involves 
fewer operations than the more conventional A.D.I. scheme; it also possesses 
the advantage of numerical stability when applied to three-dimensional prob- 
lems, which are also under investigation.) The problem is thus reduced to two 
consecutive solutions of sets of tri-diagonal equations for each of the energy and 
vorticity equations. 
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Since the boundary conditions forvorticity are unknown (except a t  a stress-free 
surface, where = O ) ,  &) was obtained from the stream function field, or, at the 
free surface, was forced through the appropriate boundary condition. Hence, the 
vorticity equation was solved only for the interior points of the domain. The 
boundary vorticity was estimated after each half iteration, thus reducing the 
time lag and improving the accuracy of the method. In addition to speed con- 
vergence, variable time steps were used. 

The elliptic equation (9 b )  for + was solved by point over-relaxation, the over- 
relaxation factor being empirically varied to minimize the number of iterations 
required. 

Initial conditions were obtained either by imposing a random temperature 
fluctuation to the whole field for the first time step with the fluid initially at 
rest, or by starting from a previously converged solution with different para- 
meters. The latter often proved to be more economical in terms of computer 
time, provided the change in parameters was not too drastic and only the final 
steady state was required. Certain questions arise, however, regarding the mode 
of motion as a result of this technique; these are discussed below. 

Except where otherwise stated, the results presented here were obtained using 
a vertical mesh size of iG of the layer depth and a horizontal mesh size of -& 
of the roll width. (As discussed below, the roll width is a variable of the solution, 
but the number of mesh points was independent of its value.) The solutions were 
obtained on an SBM 360150 digital computer, 

Description of the flow 
The majority of the results have been obtained for the case of symmetric 

lateral boundary conditions. It is convenient, first, to describe the principal 
features of the flow thus obtained, and then return to a consideration of whether 
such boundary conditions are, in fact, valid. (Readers are assured that we think 
they are.) 

The motion was constrained to lie in two dimensions and, as anticipated, 
established itself in the form of rolls. With symmetric boundary conditions it 
was only necessary to study one roll. The direction of rotation of the roll was 
not predetermined and depended upon the initial conditions. In  the results 
described here, for single rolls, the rotation is always anti-clockwise. 

Four cases are used to illustrate the general features of the flow and the 
parameters for each of these are shown in table 1.  

Figures 2 (a)-(d) show streamline and isotherm distributions? for the different 
combinations of Grashof and Marangoni numbers, with the Biot and Praiidtl 
numbers held constant. Thevalues ofBi and Pr are not particularlyrepresentative 
of practical situations. (Bi = 100 is high for natural convection, but might be 
appropriate when significant evaporation occurs, although mass transfer has 

t In these and subsequent contour plots, the figures adjacent to the contours indicate 
the values of the plotted function as a percentage of the total range of values for the re- 
spective plots. 
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not been considered in the solution; Pr = 1 is, of course, somewhat low for a 
liquid.) Nevertheless, the results display the characteristic features of the effects 
of variation of Gr and Ma. The aspect ratio a! of the roll (i.e roll width divided 
by layer depth) is a t  its optimum value for each situation. The determination of 
ao,t i s  discussed below. 

it will be observed, first, that the fluid temperature decreases as it moves 
over the surface. As far as is known to the authors, a decrease in temperature 
always results in an increase in surface tension (a situation which has been 
implied in the definition of y ,  in order to yield positive values of Ma).  It can 
therefore be anticipated, and it was found, that an increase in M u  results in an 
intensification of the motion. 

Case -4 Case B Case G Case D 

Gr 1,750 10,000 10,000 100 
Pr 1 1 1 1 
Bi 100 100 100 100 
M a  0 0 5,000 5,000 
a o p t  1-15 0.97 0.85 0.94 

TABLE 1. The parameters of the solutions used to display the 
principal features of the flow 

Without surface tension, the roll centre was always near the centre of the 
domain. An increase in Marangoni number, however, caused the roll centre to 
shift upward and in the direction of the free surface motion. This effect has 
also been observed experimentally: figure 23 of the paper by Berg, Acrivos & 
Boudart (1966) shows two-dimensional rolls in which “cold fluid flows down in a 
relatively narrow region near the roll partition, while warm liquid rises over a 
wider, less distinct region”. The shift of the roll centre was more pronounced 
at  lower Grashof numbers as can be seen in figure 2 ( d ) .  In  the extreme case of 
low buoyant forces and high surface tension, a flow developed which was similar 
to that induced by sliding a rigid surface across an enclosed cavity, as studied by 
Greenspan (1968). 

Figures 3 (a)-(1) show the corresponding contours of horizontal and vertical 
velocities and the vorticity distribution throughout the field. The highest 
horizontal velocity always occurred at the free surface while the highest vertical 
velocity was always found at the vertical boundaries. For the cases shown so 
far, the warm (upward) current was slower than the cooler (downward) current, 
and this effect was accentuated when surface tension was present. As a measure 
of this phenomenon, the ratio of the maximum vertical velocities was calculated 
(maximum downward/maximum upward), and the values obtained were 1.067, 
1.144, 1.351 and 1-968 for cases A to D,  respectively. This condition was found 
to be a function of the Prandtl number and is discussed later. 

The region of highest vorticity for a stress free surface (Ma  = 0) was the 
rigid lower boundary. As the Marangoni number was increased, however, the 
upper surface was stressed and velocity gradients imposed, thus leading to a new 
source of vorticity the strength of which, for the cases shown, exceeded that of 
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FIGURE 3. Vorticity, vertical and horizontal velocity contours 
for case A :  (a )  

(b)  u,,, = 0.95 x 10, u,, = - 0.89 X 10, 
6, = 0.65 x lo2, [,,,in = - 0.88 x loa, 

( c )  w,,, = 0.90 x 10, = - 0.12 x 10; 
for case B: (d) 0.23 x lo3, - 0.49 x lo3, ( e )  0.49 x lo2, - 0.43 x loa, (f) 0.36 x loa, - 0.46 x 102; 
for case C: (9) 0.68 x lo3, -0.59 x 1O3,(h)0*70 x lo2, -0.51 X lo2, (i) 0.41 x lo2, -0-72 x loa; 
for case D: ( j )  0.19 x lo3, - 0.37 x lo2, (k) 0.13 x loa, - 0.66 x 10, (I) 0.53 x 10, - 0.35 x 10. 
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the lower boundary. A central core of nearly constant vorticity existed at, low 
Ma, which might justify the boundary-layer approximations taken by Pillow 
(1952) and by Robinson (1967). As M a  increased, however, this feature dis- 
appeared. 

More detailed information on the stream function and velocity distribution 
for the same four cases can be seen on figures 6 7 .  

0.2 0.4 0.6 0.8 1 

Horizontal co-ordinate y 

FIGURE 4. The distribution of stream function 
across the mid-height of the layer for cases A-D. 
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0 0.2 0.4 0.6 0.8 1 

Horizontal co-ordinate y 

FIGURE 6. The distribution of vertical velocity 
across the mid-height of the layer for cases A-D. 
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FIGURE 7. The distribution of the horizontal velocity 
along the vertical centre-line of the solution region 
for cases A-D. 

FIGURE 6. The distribution of horizontal velocity 
across the surface of the layer for cases A-D. 



A numerical study of the Bdnard cell 8 15 

Figures 8-12 show the temperature distribution at  selected horizontal and 
vertical cross-sections. As the Marangoni number was increased, the fluid 
reached the free surface at  a higher mean temperature and the overall heat 
transfer increased. For the slower convective motion (low Gr and/or Ma),  the 
horizontally averaged temperature gradient was low and fairly uniform through- 
out the depth of the domain, as can be seen from figures 10-12. As the strength 
of the motion increased, however, these gradients became steeper near the 
horizontal boundaries and, at  the centre of the domain, zero or even reversed 
gradients could form, with warmer fluid lying above cooler fluid. The mean 
vertical temperature gradient near the upper boundary was generally lower 
than that near the rigid boundary, which confirms the observation of Di 
Federico & Foraboshi (1966). Right a t  the horizontal boundaries, however, these 
gradients were found to be identical (within the limits of numerical accuracy). 
This is as it should be, since there the only mode of heat transfer is by con- 
duction at  a rate given by the vertical temperature gradient. The tempera- 
ture distribution along the centre-lines of the upward and downward currents 
are also shown. The upward, hotter current exhibited its highest gradient at  
the upper boundary, while the opposite effect occurred with the downward 
moving fluid. 

Optimum aspect ratio 
In the numerical simulation of the motion, a solution of the equations may be 

found for any roll wavelength by selecting the aspect ratio a (the ratio of width 
of the solution domain to its depth) for the particular solution. It is expected, 
however, that whereas solutions for any a are theoretically valid, one of them 
will be preferred in nature. The criterion which is generally used to specify the 
preferred wavelength is that proposed by Malkus (1  954a, b )  : the fluid will tend 
to flow in a manner which maximizes the rate of heat transfer. This was confirmed 
in the proof given by Schluter et al. (1965), but has been questioned by Foster 
(1969), who gave an example for which, at a particular value of GY, white noise 
disturbances grew into a two-roll solution with a resulting Nusselt number 5 % 
lower than that for an equivalent one-roll solution with identical parameters. 
He concluded that Malkus’s criterion “is not valid at  low Rayleigh numbers for 
two-dimensional flow ”, and that “there are under certain conditions more than 
one metastablesolutionwhich can developdependingupon the initial conditions ”. 
However, the value of a used by Foster in this test was 1-8; this was not the 
optimum value, which was about 1.4 (i.e. it was not the a yielding the maximum 
Nusselt number). If the Malkus criterion is correct, the motion could not develop 
into either one or two rolls in a width of 1.8; it  would develop into a roll of width 
1.4. Furthermore, Foster found, as we do (see figure 20 below), that a multi-roll 
solution computed at  a multiple of aopt yielded the same Nusselt number as a 
single-roll solution computed at ao,t. The point is that solutions computed away 
from a,,i are physically meaningless, and cannot be used to predict the behaviour 
of a real fluid. (These remarks, of course, do not apply to a situation with rigid 
side walls.) We believe that numerical results cannot be used to prove or disprove 



816 A .  Cabelli and C. de Vahl Davis 

0.05 

m 
e 
1 
3 0.04 

f 

8 0.02 

$ 0.03 

22 
m 

8 

6 

.M 

0.01 

0 I I I I 

0.2 0.4 0.6 0.8 I 
Horizontal co-ordinate y 

FIGURE 8. The distribution of temperature 
across the surface for cases A-D. 
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FIGURE 9. The distribution of temperature 
across the mid-height of the layer for cases 
A-D. 

Dimensionless temperature 8 

FIGURE 10. The vertical temperature distribu- 
tion for case A for (i) the downward current, 
(ii) the upward current, and (iii) the hori- 
zontally averaged temperature. 

Dimensionless temperature 0 
FIGURE 11. The vertical temperature distribu- 
tion for case D for (i) the downward current, 
(ii) the upward current, and (iii) the hori- 
zontally averaged temperature. 
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the Malkus theory. However, in view of the work of Schliiter et al., we see no 
reason to discard his criterion. 

Figure 13 displays the effect of Gr and M a  on the optimum aspect ratio a. 
It is seen that a decreases with increasing M a  and also (except at low Gr and 
high Ma)  with increasing Gr. Experimental evidence supporting this behaviour 
was provided by Koshmieder (1967). However, the opposite effect was observed 

0 0.2 0.4 0.6 0.8 1 

Dimensionless temperature 8 

FIGURE 12. The vertical temperature 4 s -  
tribution for case C for (i) the downward 
current, (ii) the upward current, and (iii) the 
horizontally averaged temperature. 

5001 100 

50 t 
/ Ma=5000 

I I I 1 I 1 I I I 

0.8 0.9 1.0 1.1 1.2 

Optimum aspect ratio aOpt 

FIGURE 13. The variation of the optimum aspect 
ratio with the Grashof and Marangoni numbers at 
Pr = 1 and Bi = 100. 

also by Koshmieder (1966), in the case of convection in fluids contained between 
two rigid horizontal surfaces. From an analytical study, Schluter et al. have shown 
that, for layers of infinite extent, the optimum wavelength would indeed decrease 
with increasing (super-critical) Grashof number, while Davis (1 968), using the 
same assumption of maximization of heat transfer, showed that the influence 
of rigid side walls was to cause the reverse effect to occur. 

In  the search for the aspect ratio which maximizes the Nusselt number, it 
soon became obvious that initial conditions played an important role, not only 
in the development of the flow, but also frequently in the h a 1  mode of motion. 

The following examples illustrate, first, the effect of a sudden change in one of 
the parameters (Ma) ,  and secondly, the effect of gradually increasing the aspect 
ratio. 

A converged solution was obtained for Gr = lo3, Ma = lo4, Bi = 102, Pr = 3.8, 
the optimum aspect ratio being 0.91 and the solution consisting of one roll. This, 
when used as starting data for a higher Marangoni number of 2*104 and an aspect 
ratio of 0.50 (the other parameters remaining constant), produced a two-roll 
solution, indicating instability of the one-roll solution t o  large perturbations 

52 FL?,f 45 
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(here a sudden change in Marangoni number). This effect was also found to be 
dependent on the magnitude of the Biot number, and it is reviewed later. 

A further reduction of the aspect ratio to 0.40 (using the two-roll solution 
as starting data) led to a one-roll solution. The original (one-roll) starting data 
was then used to solve the same problem, but the aspect ratio was reduced 
directly to 0.40. A one-roll solution resulted, identical to that obtained previously. 
In the search for the maximum Nusselt number, the aspect ratio was then in- 
creased gradually and exceeded the original 0.50 (still with a one-roll solution). 
The optimum a was ultimately found to be 0.57. 

3 
2 4.14 

4.10 

0.8 0.9 1 1.1 

Aspect ratio a 

FIQ~JRE 14. The variation of Nusselt number with the aspect ratio at Gr = 20,000, Pr = 1, 
Bi = 100, M a  = 0. -, one-roll solution; A, two-roll solution; 0, three-roll solution. 

The second set of numerical experiments compares solutions obtained by 
gradually increasing the aspect ratio with those obtained when starting directly 
from rest with a small random temperature perturbation. 

For the same aspect ratios, one-, two- and three-roll solutions were obtained. 
Adjacent rolls of multi-roll solutions were always of opposite rotation, and were 
obtained by starting with the fluid initially at  rest. To ensure comparable 
accuracy in each case, 21 mesh points were used in the vertical direction, while 
21, 41 or 61 points were used in the horizontal direction for the one-, two- and 
three-roll solutions respectively. The curve of figure 14 was obtained by gradually 
increasing the aspect ratio of a one-roll solution, while the triangles and circles 
show respectively the results for two- and three-roll solutions. The one-roll 
solution was stable to changes in aspect ratio for values of the latter considerably 
higher than would be obtained when starting from rest. This range of one-roll 
stability, however, was found to decrease with increasing Marangoni number. 

Note that the Nusselt number scale exaggerates the differences between the 
values of Nu for the one-, two- and three-roll solutions. These differences are of 
the order of 0.2 yo and are certainly numerical in origin. 
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Properties evaluated at surface temperature: effects of Biot number 
Because the surface temperature is not constant, and is not known in advance, 

it is an inconvenient property to use in the specification of the various parameters 
of the flow. Moreover, with heat transfer a t  the surface described by a heat 
transfer coefficient, an additional parameter (the Biot number) is introduced 
which is, so to speak, external to  the main problem and independent of it 
(although the solution of the problem is not independent of the Biot number). 

Once a solution has been obtained, however, it  is a simple matter to determine 
the average surface temperature, which can then be used to calculate values of 
Gr, M a  and Nu which apply just to the liquid layer. Denoting the dimensionless 
average surface temperature by O,,, it can readily be shown that these ‘layer 
parameters ’, when based on the difference between the lower surface temperature 
and O,,, are given by 

Gr, = (1 - O,,) Gr, Ma, = (1 - OSa) XU,  NU, = NU/(  1 - O,,). 

Clearly, as Bi increases, O,, approaches zero; this causes the layer parameters to 
approach more closely the overall values. Furthermore, the extent to which the 
surface temperature can vary is thereby limited, and hence Marangoni number 
effects are diminished. 

An indication of the influence of the Biot number on the layer and overall 
parameters is provided in table 2. 

~ ~ ~~ 

Case Bi Pr Gr M a  Nu Gr, Ma, Nu, 
E 100 1 20,000 0 4.152 19,173 0 4.331 
P 1 1 20,000 0 0.770 4,855 0 3.172 
G 100 1 6,000 5,000 3.370 5,800 4,893 3.486 
H 1 1 30,000 5,000 0-793 5,930 988 4-013 

TABLE 2. Effect of the Biot number on the effective parameters 

For Bi = 100 and Bi = 1, and for identical Gr and Ma (overall values), the 
tabulated results for cases E and F show the layer Grashof numbers to be in the 
ratio of approximately 4: 1. The overall Nusselt number is also seen to be strongly 
affected, while Nu, shows some decrease which is in accord with the reduced 
Gr,. For cases G and H ,  while the overall values of Gr are in a ratio of 1 : 5, the 
layer values of this parameter are in much closer proximity. (It is practically 
impossible to predict overall values which, for different Bi, will yield identical 
layer parameters.) Under these conditions, the resulting layer Marangoni 
numbers are in the ratio of approximately 5: 1, and Nu, has increased. It was 
generally found that, for approximately equal layer parameters, Nu, increased 
with decreases in Bi. 

The Biot number also had an influence on the preferred wavelength. In  the 
absence of surface tension effects, the optimum value of a increased with in- 
creasing Bi. As M a  was increased, however, this effect became less pronounced, 
and was even reversed for large enough values of the Marangoni number, as 
shown in table 3. 

52-2 
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It was generally found that the surface tension effects (shift of roll centre, value 
of aopt, etc.) were more pronounced for a smaller Biot number. This could reason- 
ably be expected, since a higher thermal resistance allows a greater variation in 
temperature a t  the free surface, and therefore greater variation in net surface 
tension force. 

Gr, Ma, aopt at Bi = 100 aopt at Bi = I 

1654 0 1.15 1-24 
3226 0 1.09 1.18 
6715 0 1.03 1.13 
5930 988 1.01 1-03 
3889 1945 1-02 1-02 
1085 2171 1.12 1-02 

TABLE 3. Effect of the Biot number on the preferred wavelength 

As already mentioned, Bi = 100 is not really a practical value. It has been 
established, however, that the solutions obtained with that value are repre- 
sentative of what can be expected from more realistic values. The use of a large 
Bi was convenient from a computational viewpoint as it simplified and shortened 
the search for the optimum aspect ratio. This follows from the greater sensitivity 
of the pattern of the solution to large changes in M u  at small values of Bi, com- 
pared with the sensitivity a t  large Bi. 

For example, at  Bi = 100, a one-roll solution experiencing a change in M a  of 
5000 would generally remain a one-roll solution; at Bi = 1, however, the same 
change in M u  would be too drastic and would cause a two-roll solution to form 
unless there was a corresponding (and sufficient) reduction in a:. Since a: was not 
known, this situation was difficult to avoid. An alternative procedure would have 
been to start each solution from rest, and in view of the difficulties encountered, 
this might well have been a better approach ! 

Prandtl number effects 
Many of the results were obtained with a Prandtl number of unity. This value 

was not chosen for any special reason; the aim was to obtain results and study 
effects rather than to simulate any particular fluid. 

Some results were, however, obtained with higher Prandtl numbers. These 
showed that, in common with other buoyancy-driven flows, the characteristics 
of the B6nard cell are generally more conveniently described in terms of the 
Rayleigh number Ra = Gr.  Pr, rather than Grashof number, or, better still, in 
terms of the layer Rayleigh number Ra, = Ra( 1 - e,,). It was found that Pr had 
little effect on either the general features of the flow pattern or on the optimum 
mode of motion. Nevertheless, the dimensionless parameters describing the flow 
field were affected as shown in figures 15-17, and the Nusselt number decreased 
somewhat with an increase in Prandtl number (for a constant Rayleigh number) 
as shown in table 4. 
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The value of the Prandtl number generally affected the velocity distribution 
in the liquid. At a Prandtl number of unity, the downward current had a higher 
velocity than the upward current. However, as the value of Pr was increased, 
this condition was not necessarily maintained (particularly when surface tension 

Or M a  Pr Ra, Nu Nu, 
18,000 0 1 17,279 4.6410 4.8343 
9,000 0 2 17,291 4.5923 4.7807 
4,500 0 4 17,303 4.5020 4.6833 

TABLE 4. Effect of Prandtl number on Nusselt number 

0-2 0.4 0.6 0-8 
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FIGURE 15 

Horizontal co-ordinate y 
FIGURE 16 

FIGURE 15. The effect of Prandtl number on the distribution of stream function across the 
mid-height of the layer for (i) Gr = 18,000, Pr = 1, Bi = 100, M a  = 0 and (ii) cfr = 4500, 
Pr = 4, Bi = 100, Ma = 0. 
FIGURE 16. The effect of Prandtl number on the distribution of horizontal velocity across 
the surface of the layer for (i) Cr = 18,000, Pr = 1, Bi = 100, M a  = 0 and (ii)  Gr = 4500, 
Pr = 4, Bi = 100, M a  = 0. 

effects were absent). For instance, at  Pr = 3.8, Gr = 1750, Bi = 100, Mu = 0, 
the upward current had a higher velocity over the lower half of the roll and 
the absolute maximum vertical velocity occurred in the ascending fluid. As the 
Marangoni number was increased to 5000, however, the region over which 
the absolute upward velocity exceeded the downward velocity was decreased 
and the absolute maximum vertical velocity was found again to occur in the 
descending fluid. This surface tension effect is easy to understand, since 
the descending fluid has been further accelerated at  the free surface, whereas the 
ascending fluid is retarded by the rigid lower surface. As a further result, the 
position of the maximum vertical velocity has moved upwards. 

The work of Sarnuels (1966)) describing the motion of fluids enclosed between 
rigid boundaries and uniformly heated at  the lower surface, showed that the 



822 A .  Cabelli and G .  de Vahl Davis 

Q 

2 
1 
$ 0.06 
a 

Y 

8 

8 0.02 

+ 
m 

0.04 

3 

.C 

E 
R 

0 I I I I 
0.2 0.4 0-6 0.8 

Horizontal co-ordinate y 

FIGURE 17. The effect of Prandtl number on the distribution of temperature across the 
surface of the layer for (i) Gr = 18,000, Pr = 1, Bi = 100, M u  = 0 and (ii) Gr = 4500, Pr = 4, 
Bi = 100, Mu = 0. 
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FIGURE 18. The dependence of Pr on the fluid flow parameters: 0,  M u  = 0, B$ I= 100, 
1 <  P r <  20; 0, Mu=O,  B i =  1 ,  1 < P r <  20; ., Mu=5000, B i =  100, P r =  1; 0. 
M u  = 5000, Bi = 100, Pr = 3.8. (For the sake of clarity not all the computed points are 
shown.) 
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dimensionless quantity Pr+-,aX was a function of Ra only, when the Prandtl 
number exceeded a value of unity. With a free upper surface, and considering 
the effect of surface tension, we have two additional parameters to contend with, 
namely the Biot and Marangoni numbers. It was found that for stress-free 
surfaces, for a fixed Biot number and for Pr in the range 1-20, Pr +max was indeed 
a function of Ra, only, as shown in figure 18. However, P T + m a x  was found to be 
a function of Bi. Furthermore, once surface tension effects were introduced, it 
was found that the relationship was no longer independent of the Prandtl 
number, and an increase of the latter caused an increase in Pr +max. 

I 1 

5 10 15 

p r  @ m x  

FIGURE 19. The dependence of the horizontally averaged surface temperature on Pr 
at a Biot number of 100 for (0) Pr = 1 and (0 )  Pr = 3.8. For the sake of clarity not all the 
computed points are shown. Both curves were obtained for a range of Ra of 1,000-20,000 
and a range of M a  of 0-10,000. 

We may think of P r + m a ,  as a measure of the strength of convection, and, 
intuitively, we would expect an increase in mean free surface temperature to 
be assooiated with stronger motion. This was in fact always the case, and figure 19 
shows that the relationship between the mean upper surface temperature and 
the strength of convection was independent of the nature of the motion (i.e. 
purely convective, surface tension driven, or any combination of the two). It 
is obvious that such relationship could only hold for a particular value of the 
Biot number. The results shown in figure 19 were obtained from solutions with 
a Biot number of 100 and for a range of Gr and Ma. As the Prandtl number in- 
oreased, for the same strength of convection, the surface temperature was 
generally found to decrease. 
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Heat transfer 
The heat transfer across the cavity was separated into convective and con- 

ductive modes, and the typical results of figures 20 and 21 again show that for 
higher Grashof numbers we obtained regions of negative conduction. This effect 
was not observed experimentally by either Somerscales & Dropkin (1966) or 
Di Federico & Foraboshi (1966) in the turbulent regime of convection, but a 
similar effect was observed by Elder (1965) and MacGregor & Emery (1968) for 
laminar convection between vertical plates. As the strength of convection in- 
creased, the upper and lower convection layers became thinner and the central 
region of high convective contribution increased in size. 
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FIGURE 20. The rate of heat transfer 
through t,he layer for case D (i) by con- 
duction, (ii) by convection and (iii) total. 

FIGURE 21. The rate of heat transfer through 
the layer for case B (i) by conduction, (ii) by 
convection and (iii) total. 

The addition of the two effects should give constant total heat transfer across 
the cavity, since the side boundaries are adiabatic. However, the use of a one- 
sided finite difference approximation at  the horizontal boundaries as against 
central differences throughout the rest of the domain gave results consistently 
higher at the boundaries. This effect was more pronounced at  higher cT(r and .Ma, 
when higher velocities may be expected. As a result, it was felt that the best 
estimate of the heat transfer rate was provided by the values of N u  at the mid- 
height of the liquid layer. 

Heat transfer results at the optimum wavelength for surface Rayleigh num'bers 
ranging up to 20,000, and Marangoni numbers of 0, 1500 and 5000 were obtained 
at a Biot number of 100 and a Prandtl number of 1. They are shown on figure 22, 
which indicates a form of relationship similar to that obtained experimentally. 
Since the effective Marangoni number is not known a priori, and also since it 
varies for different solutions (except in the case of M a  = 0), it is almost impossible 
to obtain results which, for a range of effective Rayleigh numbers, will have 
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identical values of Ma,. The curves are therefore shown as a function of the 
overall Marangoni number. At M a  = 5000, for instance, the value of Ma, varied 
from 4775 a t  Ra = 20 000 to 4926 at Ra = 100. (From the results of figures 18 
and 19 it is obvious that for increasing Ra,, the surface temperature increases 
and hence the effective value of M a  decreases.) 

~ 

% 4 -  
Q 

2 3 -  

I 
500 1000 5000 10,000 

Rayleigh number Ra, 

FIGURE 22. Tho variation of the Nusselt number as a function of Rayleigh 
number at Pr = 1 and Bi = 100. 

Stability 
It is well established that for buoyancy driven convection, there exists a 

critical Rayleigh number below which any disturbance imparted to the fluid 
will decay. Nield (1  964) has shown that when the effects of surface tension are 
added to the effects of buoyancy, there also exists a critical Marangoni number, 
and that certain combinations of M a  and Ra must be exceeded before motion 
impends. The form of the relationship between M a  and Ra is a weak function of 
the Biot number. 

It was difficult, in a reasonable amount of computer time, to determine the 
stability limits with any precision, even when the effect of only a limited number 
of parameters (Ra and M a )  was studied. The method used was to disturb ran- 
domly (usually through the temperature field) an initially stationary fluid, and 
observe whether the ensuing motion decayed to rest again or reached a steady 
non-zero value (of stream function). For each case this would take an appreciable 
amount of computer time (of the order of 10 to 15min). The domain was taken 
to have an aspect ratio of unity, and, bearing in mind that the optimum also 
had to be determined, it will be realized that the location of the stability limit 
by this method is not particularly efficient. It, nevertheless, yielded some results 
which, within the limits of the accuracy used (large steps in Ra and Ma)  agreed 
surprisingly well with those of Nield. 

A typical set of transients for the maximum value of the stream function is 
shown in figure 23; from these results, the stability limit was taken to lie in the 
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range of Grashof numbers between 800 and 900. From a succession of such results, 
we derived the marginal stability curve shown in figure 24, which was obtained 
for Bi = 100 and Pr = 1. 
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FIGURE 23. Typical transients of the maximum 
value of stream function for Ma = 1000, Pr = 1, 
Bi = 100. 

FIGURE 24. Critical stability curve 
for Bi = 100, Pr = 1. 

Another approach to the critical parameters is the extrapolation of the heat 
transfer relationship to a Nusselt number of unity (based on the mean free 
surface temperature). From figure 22 it is obvious that, while a critical 
Rayleigh number exists for Ma = 0 and Ma = 1500, it will not be found for 
Ma = 5000 (i.e. a Marangoni number of 5000 is supercritical a t  all Rayleigh 
numbers). 

The critical parameters obtained by these two methods may be compared with 
Nield's results. At M a  = 0, we find Ra, = 1100 from our marginal stability 
curve, and RG, = 1000 from the extrapolated heat transfer relationship of 
figure 22. The value given by Nield was 1086. For Ra = 0 in figure 24, we find 
Ma, = 3200, while Nield gives a value of 3304. It can easily be shown that a t  
critical stability, the surface temperature is given by I/( 1 + Bi) and that the 
effective Marangoni number is therefore equal to M a .  Bi/( 1 + Bi). At Ma = 1500, 
our effective critical parameters were Ma, = 1485, Ra, = 650. From figure 1 
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and table 1 of Nield's paper, the critical Rayleigh number forBi = 100, M a  = 1485 
is found to be approximately 685. The agreement in all these comparisons is 
very satisfactory. 

Periodic or symmetric boundary conditions 
Experimental evidence (Berg et al. 1966) is sufficient to justify the belief that, 

under appropriate conditions, a liquid which is heated from below will form 
itself into a series of two-dimensional rolls. There is no doubt, therefore, that 
it is valid to seek solutions to the governing equations by imposing conditions of 
periodicity on the stream function, vorticity and temperature. It now remains to 
examine whether, as one would tend to suspect, the periodicity extends to 
adjacent rolls (with the necessary sign changes) or only to adjacent roll pairs. 
Since the consequent saving in both computer time and storage requirements 
made the use of symmetric boundary conditions most appealing, it was felt 
necessary to devote some effort to justifying their validity. 

If the motion in adjacent rolls is symmetric, it may be concluded that the 
streamline dividing them is vertical, and that the horizontal temperature 
gradient, the horizontal velocity component and the vorticity along this line are 
all zero. Solutions obtained with the use of periodic boundary conditions were 
therefore examined to test this conclusion, and were also compared with solutions 
obtained using the same parameters and symmetric boundary conditions. 

Table 5 records the co-ordinates of the lines @ = 0 on either side of anticlock- 
wise rolls computed using periodic boundary conditions with several sets of 
solution parameters, and also the horizontal temperature gradients along these 
lines. For convenience, the aspect ratio used was unity, and variations in the 
horizontal co-ordinate with depth therefore give the departure (in fractions 
of the roll width) of the dividing streamline from the vertical. 

It can be seen that the deviation from the vertical is largest at  the highest value 
of H a  and the lower value of Bi, i.e. when surface tension effects are at  their 
strongest. It should be kept in mind, however, that this maximum deviation of 
0.02061 is only about two-fifths of one mesh length or about 2 %  of the roll 
width. For this case, the horizontal temperature gradients along the dividing 
streamlines are seen to be very small (about 3 % of the maximum internal value 
of 0.0572). In other examples, both the deviations from the vertical, and the 
boundary horizontal temperature gradients, are very much smaller. 

Table 6 compares some descriptors of the motion found with the two boundary 
conditions. It can be seen that at zero or low Ma the differences are negligible. 
As Ma was increased, the situation deteriorated somewhat. 

It is not unreasonable to suggest that these experiments validate the belief 
that the motion in adjacent rolls is symmetric. Although there is a progressive 
departure from this condition as, in particular, M a  increases, it  is plausible that 
this is not a true feature of the flow, but an indication of increasing truncation 
errors associated with the finite difference approximations used. In  either case, 
we felt justified in the belief that the use of the symmetric boundary condition 
would not introduce appreciable errors. 
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Gr 
M a  
Pr 
Bi 

Vertical co-ordinates 

0.0 
0.1 
0.2 
0.4 
0.6 
0.8 
0.9 

Max. departure from 
vertical 

6,000 
0 
1 

100 
& 
Left Right 

0.00125 1.00081 
0-00125 1.00081 
0.00126 1-00082 
0.00127 1*00080 
0.00125 1.00080 
0.00125 1-00084 
0-00124 1.00101 

0.00003 0*00020 

0.0 0.0005 
0.1 0.0006 
0.2 0-0010 
0.4 0.0008 
0.6 0.0004 
0 8  0.0008 
0 9  0~0010 

;Max. horiz. temperature 1. 
gradient 

- 0.0005 
- 0.0006 
- 0.0009 
- 0.0016 
- 0.0024 
- 0.0008 
- 0.0003 

1375 

6,000 
9,000 

1 
100 
& 
Left Right 

0.00074 1.00875 
0.00127 1.00679 
0*00190 1.00563 
0*00230 1.00463 
0.00192 1.00390 
0.00150 1.00320 
0.00160 1.00287 

0-00156 0.00588 

0.0014 0-0012 
0.0027 0.0056 
0.0085 0-0053 
0.0145 0.0000 
00106 0.0000 
0.0068 - 0.0008 
0.0086 - 0.0010 

1.3535 

20,000 
10,000 
3.68 
0.1 

4-7 

Left Right 

0.00104 1.00195 
0.00314 1.00550 
0.00545 1.00855 
0.01000 1.01330 
0.01350 1.01705 
0.01710 1-01995 
0.02165 1-02120 

0*02061 0.01925 

0.0010 0.0007 
0.0016 0.0009 
0.0014 0.0009 
0.0019 0.001 1 
0.0006 0.001 1 
0.0003 0.0007 
0-0002 0.0003 

0.0572 

( b )  

TABLE 5. (a) Horizontal co-ordinates a t  II. = 0. ( b )  Horizontal temperature gradient along 
$ = 0. Note: The horizontal co-ordinates of the line 9 = 0 a t  the lower boundary could 
only be determined approximately by locating the position of the maximum and minimum 
values of' thc vertical temperaturc gradient. Those co-ordinatix have thcrofore riot been 
included in the table 

Gr = 6 x lo3, Pr = 1, Ma = 0, 
Bi = 102 

Gr = 6 x lo3, Pr = 1, Ma = 5 x 103 
Bi = lo2 

Periodic Symmetric Periodic S ymmotric 
b - 7 - b  

Min Max Min Max nilin Max nilin Max 

Stream function 0 8.9 0 8.9 0 11.0 0 11.2 
Vertical velocity -29.4 33.1 -29.5 33-2 36-2 52-3 -36.8 54.6 
Horizontalvelocity - 33.1 25.6 - 33.1 25.6 - 59.8 31.1 - 61.3 31.6 
Vorticity -305.7 170.4 -305.7 175.3 -396.1 519.3 -405.9 541.8 
Nusselt number 3-0766 3.0766 3.7184 3,7754 

TABLE 6. Comparison of results for period and symmetric boundary conditions 

Conclusion 
This is the first time, to  the authors' knowledge, that  surface tension effects 

have been incorporated into the full solution of the equations of mass, momentum 
and energy conservation. As was predicted by linear theory (and confirmed by 
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experiments) these effects encourage the motion when surface tension is a de- 
creasing function of temperature (as it is for all known liquids). Whilst a full 
parametric study of this problem does not seem possible within a reasonable 
amount of computer time, many of the general properties of the flow have been 
obtained. The effects of flow parameters (Ra, Pr, Bi, M a )  on the preferred mode 
of motion were also studied subject to the Malkus criterion of maximum heat 
transfer. As a result of numerical experiments, it was found that the condition 
of symmetry on adjacent rolls was quite acceptable while having the obvious 
advantage of reducing the solution time considerably. 

This work was supported by the Australian Research Grants Committee, for 
which the authors are grateful. 
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